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ESTIMATES OF THE NORMAL VELOCITIES
OF PROPAGATION OF LAMINAR AND VERY
SMALL-SCALED TURBULENT FLAMES

V. S. Baushev and V. N. Vilyunov UDC 536.46 : 533.6

On the most general assumptions (taking account of the Lewis—Semenov number, thermal ex~
pansion, variability of thermophysical parameters, etc.), analytical estimates are obtained for
the normal velocities of combustion of laminar and turbulent flames, In the case of an Arrhenius
dependence of the reaction velocity on the temperature, the combustion velocity is represented
by an asymptotic series with respect to the Frank-Kamenetskii dimensionless temperature; for
turbulent flames, with respect to a parameter of the relative scale of turbulence. The final re-
sults over a wide range of change of parameters are compared with a numerical calculation on

a computer of the exact equations and with the relations obtained by the method of combined
asymptotic expansions,

1. Mathematical Formulation of the Problem, Laminar Flame

When the temperature dependence of the rate of the volume heat release isdetermined bythe Arrhenius
law

@ = (p(T)ywz(T)exp(— E/RT), (1.1)

the thermal diffusion mechanism of propagation of a one-dimensional steady flame is described [1] by the sys-~
tem of equations

dp/du = vik(u)f(u)/p — w; (1.2)
(U/Lydvidu = 1 — olv — u)p, 0 <u<<t

and with the boundary conditions

u=0,p=0,v=0; (1.3)
7 u=1,p=0; (1.4)

_ [exp(— 8/(1 —ou), OLu<e
#w) { o bosesty (1.5)

The "cutoff" equation (1.5) of the heat release (e is the "cutoff" parameter) ensures the existence of an
eigenvalue w; of the problem (1.1)-(1.4), which is unique when 1 =Le < [1], The question of uniqueness when
Le <1 still does not have a solution,

The relations between the dimensionless and dimensional quantities are

u = (T4—TWT+— T_); p = —(AMA)du/dE; & = x/z., k(u)= (Mhr)plpr)alz
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- Le = MepD; B = RTL/E; x5 = (asty )% ay = Alepy;

T, =270 Mexp(1/B)y 0 =w, (v, /a,)"

0, = (E/RTL)(T+—T_); o=30,=1—-T_/T.,
where v is the concentration; T is the temperature; w, is the normal velocity of flame propagation, relative
to the reaction products; ¢ =const is the specific heat at constant pressure; p=p(T) is the density; D=D(T)
is the effective coefficient of diffusion; n is the reaction order; x.,. is the spatial scale; z(T) is the frequency
factor; Le is the Lewis—Semenov number; 7, is the characteristic time of chemical reaction; E is the energy
of activation; R is the gas constant. We denote the parameters referring to the initial mixture and to the final

reaction products by the subscripts minus and plus, respectively. A similar indexing is used later for de-
noting the upper and lower bounds of functions and velocities of combustion,

In the special case of power functions A~T™1, p~T=B, z~T™M2, 0=m;<{1, 0=n=3, 0=m,<1, we have
k() = (1—om)™m=m, —n +m,, :

Turther consideration is valid also in the case when the temperature dependence f(u) differs from the
Arrhenius dependence, but satisfiesthe conditions for the existence and uniqueness of the eigenvalue wy.

The case of the dependence of the solutions of system (1.2) with the conditions (1.3) on w is denoted by

the following equations:

pu) = plo, u); v{u) = o, u.
Obviously,

dpldu = 8p/ow; dvidu = 6v/du. (1.6)
The boundary condition (1.4), taking account of Eq. (1.5), is equivalent to the condition

p(e) — o(l —e) =0. 1.7

Therefore, instead of Eq. (1.4), Eq. (1.7) can be used, and the solutions of system (1.2) can be considered only

in the region 0 <u<e,

2. Estimates of Combustion Velocities. Laminar Flame

When Le =1, system (1.2) reduces to a single equation:
dpldu = p(u)/p — o, ¢lu) = u* Eu)f{w). 2.1)

We shall assume the "cutoff" parameter to be variable and we shall denote it by t, 0 <t <e. The eigen-
value w,=w,(t) will be satisfied according to Ed. (1.7) by the equation

plag, 1) — 0ol — 8 = 0. (2.2)
Differentiating this equation with respect to t, and taking into account that according to Eq. (1.6)
opldt + oy = iil?(dp/du + @g) = @(t)/plog, 1) = @(t)/ ol — 1),
and denoting qt) =4 (v, t) =8 plv, t)/dw, we obtain the differential equation for w:
doy/dt = ¢(t)/{ed—t)1 — ¢ — gloy, £} 2.3)
with the condition w;(0) =0, which follows from Eq. 2.2)

According to the theorem of estimates [2], with increase of w the solution of Eq. (2.1} with the condition
p(0) =0 is reduced; therefore, q <0. Differentiating Eq. (2.1) with respect to w, we obtain

dg/du = —(o(u)/p?)g — 1.

When u=0, g =0, and therefore

t
gt)= — [ ¥ gdu — 1>~ 1.
0

pZ
After substitution in Eq. (2.3) of the upper +=O) and lower (q_= —t) functions and after subsequent integra-
tion, we find the upper and lower estimate of wy:
14 e
of =2 [ 2o au; o2 —2 [$Hau. (2.4)
. 0 [
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Similar relations are obtained in [3] by a more complex method, The approximate formula of Zel'dovich
is well-known [4]:

) 6 2.5)
m;_—_2'\_ @ (u) du. (
0

Formula (2.5) gives a value for w », which is less than the lower estimate of Eq. (2.4).
For the two equations of (1.2), similarly to the foregoing, we have
dog/di = [v{w,, RO {0l — 1 — t — glo,. )1} (2.6)

Equation {2.6) can be used for finding an estimate of wy, if the estimates of v and q are known, A simpler route
consists in the use of formulas (2.4), We shall suppose that an upper functionv(u) has been found, indepen-
dent of w, suchthat v<v,. The eigenvalue wy of the problem

dpyfdu= o2k () f ()] py— 0, py(0) = ps(1) = 0

will be greater than wy, Actually, in considering the solution of this equation with the condition p;{(0) =0, we
have

pult) = ;’1((1)0’ £) — ay{l —¢) >E(wo» g) — a1 —¢) =0,
and, in order that p(1) vanishes, it is necessary to increase w. It can be seen in Fig. 1 that the upper esti-
mate for wy, which can be obtained by means of Eq. (2.4), will be the upper estimate also for w,.

In a similar way, it will be shown that if V{vy, u) > v_(u), the lower estimate wy, for the eigenvalue of the
problem

dps /du = v () k(u) f(0)/p; — @, pa(0)= p,(1)=0
is the lower estimate also for w, (see Fig. 1).

A, The Case 1=Le < », For simplicity we put Le =const, We shall show that

v_(u) = u<vlo, ) <1—(1—wle =uv.(u). 2.7)
The expansion of the solution of system (1.2) and (1.3) in series of powers of u in the vicinity of u=0 has
the form
p=pot-k pou2-+- ..., v= vou ot 2 L.
The expansion coefficients are equal to

¢ — ot Vet hkgle . © + p;
o = Vot dhple™ 0 _OFR _p ), et

2Le! o -+ Le!p, ’

po=0, po=2k/o; vo=1, vg=(2k,/0) (L —Le " n=2

(solutions are considered which are positive in the vicinity of u=0), T can be seen that v >u in the vicinity of
u=0 for any values of w, If we suppose that v >u when 0 <u <u, and v{ug) =u,, then at this point we should have
dv(ug)/da=1; in reality [which follows from the second equation of (1.2}], dv{uy)/du=Le >1. The contradiction
obtained proves the left-hand side of inequality (2.7).

It follows from the first equation of (1.2) that
“(dldu)p + ou) = Mupwf(u)/p — o,

whence follows the inequality p—)(wo, u) +wgu <plwp, € ) +wye ., Taking account of Eq.(1.7), we obtain p(ZxJO, ) < ky{1-u).
Substituting the quantity w(1—u) in place of p in the second equation of (1.2) and solving it, we arrive at the
upper estimate v,; inequality (2.7) is proved.

In accordance with what has been stated, the estimates assume the form

£
2 f—(l—u Le'n,’
0} =2 5§ = (12 u])-zA I gy (2.8)
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4
ot —2 | u“l;(u)f(u) du. (2.9
b — U

If Le #const, then

u A
Le (u)d
v+(u)=1——exp(b5' 1(u_uu)
and estimate (2.8) changes in a corresponding manner.

B. The Case 0<Le<1. The inequality v_=1— (1—-u)Le <v<u=v, is proved by similar considerations
for Le =const. In all, we have

2
‘0122‘5 u kw)f(u) du; (2.10)
3 .

o — fli—(l——u)Lel”k(u)f(u)d

1—u

(2.1_1)

When Le #const, v_ and the lower estimate of Eq. (2.11) are changed,

If certain eigenvalues exist, then they are all included between w, and w_, determined by formulas (2.10)
and (2.11). The uniqueness of w, in the case Le =1 follows from the monotonicity of the function p(w, 1) =p(w, &)~
w(l—¢) [it is shown in [1] that with increase of w the function p(w, 1)} decreases (v, 1) <0)]. In the case Le <1,
it is not possible to show analytically the negativity of q(w, 1). By means of a numerical experiment for the
parameters ¢ = §,=14, 0,1=TLe <1 and different values of 5, we shall show that d(, 1) <0 and, consequently,
wy is unique. ‘

C. The Case Le==, The upper estimate is obtained from Eq. (2.8), determined by the transition (Le— =)

ot 2.12
_2b§( ) du, (2.12)

The lower estimaté (2.9) is unchanged. A better lower estimate than Eq. (2.9) can be obtained if we start not
from system (1.2), but from one equation to which this system is reduced for Le =-o:

dpldu = (u + ple)k(u)f(u)/p — .
The equation for w, assumes the form
o}/ de = 12k () F ()] /(L — £) [ — £ — g (@5, )]} (2.13)
When n=1, we have
dgidu = —(uk{u)f(u)/pt)g — (k(w)f(u)/e®) —

Taking into account that g <0, we obtain
t
! 1 (kK
g>—1— afk(u)f(u)du>- t——r bf L) gy,

i—u

Substituting q_ instead of q in Eq. (2.13), we find

0 = [ k() )1 —uw"du. (2.14)
0

In the case n=2, since w+p/w)? >u? +(2u/wp), the lower estimate for the eigenvalue of the problem

dp/du = [(1® + 2upl/e)ku)f(w)/pl — @, p(0) = p(1) =0 (2.15)
will be the lower estimate also for w,. The equation for w, of problem (2.15) has the form -
dof __ u@—nk@f@ _ (2.16)

dt (4 — |l —t—q(w,, )]

Differentiating Eq, (2.15) we respect to w
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dg'du = —(u*f(k() p2g — Cufidk(u) v?) — 1
and taking into accountthat q <0 and 2 <(2—t)/(1—t), we shall have

g = —t—— V¢
e

i

C2-—1i

I"_—tf(f)]f(f)(][. 2.17)

Substituting Eq. (2.17) in place of q in Eq. (2.16), we obtain

£
ol = | ;%; th ()] (1) d1. (2.18)

U

[
For n=1, it is found in {5] that. wi:.\f(u)lf(u)du and for n=2

u

ol =4 Lufwkin) du.
o

The estimate (2.14) is more accurate than in [5].

3. Approximate Relations, Laminar Flame.

The integrals occurring inthe estimate for the case of a strong dependence of f(u) on temperature
(] dinf(u)/du| >1) will be derived approximately. The approximation consists in the following: all functions
which do not depend too strongly on temperature (1-u)-!, (1-u)72, k@) =(1 —ow)™,and[1-( —u)lenare ex-
panded in a power series in the vicinity of the maximum temperature of combustion (w=0). The function f(w)=
exp[-08gu/(1—ou)] also is represented by a series f(u)= (1—600u2+ ,_,)e'eou,

As aresult of term-by-term multiplication of the series, a series is obtained whose coefficients are propor-
tional to integrals of the form
g
\ u "-'—Se—'eeudll - (3u1>

0
expressed in terms of an incomplete T'-function.

The final result for the velocity « should be independent of the "cutoff” parameter ¢; in the contrary case,
the initial formulation of the problem (1.2)-(1.4) becomes physically incorrect. The independence of wone is
equivalent to substituting the upper integration limit € in Eq. (3.1} by infinity, or, what amounts to the same,
by neglecting terms of order (8 {,16-9 0€) in comparison with unity, Therefore, instead of Fq. (3.1) we have

ES)

\ erlfse~9011dl( _
b}

Let us confine ourselves to the case k{u) =1.

We write certain asymptotic expansions obtained in this way with an accuracy of (1/9):

o~ = 0=l + (n + 1)/26(1 — (n + 2) 6 — a{Le — 1)/2)], (3.2)

21 (n + 1) Le®
Ox = ‘/—(“ne—n;%’&‘ (3.3)
0

is the asymptotic formula of Ya. B. Zel'dovich—L. D. Landau. Formula (3.2) is valid for 0 <Ie <1.

where

Over the range of variation of 1 = Le <, the estimate above Eq. (2.8) has the form
01 = o0xll + (r -+ 1)28,-2 — (n + 2)o0 — (/2)(Le—1))1. 3.4)

It can be seen that the difference between Eq. (3.2) and (3.4) is not very significant, Therefore, the arith-
metic mean will be used as the interpolation formula, consisting of w_ and w,. The result obtained in this way
with some approximation canbe extendedtothe entire range of variationof 0< Le< e, Thebasis for this extension
is also that the estimate (2.8) is the upper estimate for wy < w, (see Fig. 1) and in the case Le >1 the estimate
(2.11) is the lower estimate for wy >wy:
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<o> = (04 + 0)2 = 0x {I + [(n + 1)/26,(3/2 — (n -+ 2)o6 — (r/2)(Le — 1)). (3.5)
When Le is finite and 6,>1, the upper (3.4) and lower (3.2) estimates coincide, sothatformula (3.3) also has a
an asymptotic meaning when Le =1, In a number of cases, it will give a good result also for values of 8y which

are not too large (Table 1) because of compensation in the signs of the expansion coefficients of order € 0‘1),
In the case Le— =, we find from Eq. (2.14) and (2.18) :

o = {1/ YO + (0,5 — 0)/6], n = 1; (3.6)
o— = (V2/6)[1 + (0,5 — 36)/8,1, n = 2. 3.7

Comparison of formulas (3.2) and (3.4)-(3.7) with the results obtained by the method of combined asymp-
totic expansions (CAE) [6, 7], given in Table 2, where a, b,and ¢ are the expansion coefficients of order
(1/0), is represented in the form 8, '[a—bo —c(Le—1)]. For Le =w, ww(n=1) =1/V6, and w (0 =2) =v2/9,.
Comparison with the numerical calculation of the boundary-value problem on a computer is given in Tables
1 and 3. Here w, (computer) is the numerical calculation; Aw =we /@y, A(CAE) =w 8, 7V wy, A~ =w_/w,, and
<A >=<w >ly, are the corresponding deviations from the exact value of the velocity,

4. Estimates of the Combustion Velocity. Very Slightly Turbulent Flame

The combustion velocity wj is the eigenvalue of the problem [8, 9]

dp/du = ®(u, p)/p — o, p(0y = p(1) =0,

_ [o(u+ Fp) + ¢lu — Fp), 0 < u<e
2®(u1p)'—“{ O,€<u<,1v

(4.1)

olu) = wf(u).

The derivation of the equation for w, is similar to the derivation of Eq. (2.3),
doy/dt = B(t, 0y(1 — &)/l — )1 — t — q), 0,(0) = 0. 4.2)

According to the theorem of estimates [2], ¢ = op(w,u)/do < 0. Assuming that q =0, we find from Eq. (4.2) the
equation for determining w,:

do,/dt = @(2, o, {1 — /e (1 — 1), 0y(0) = 0, 0,(g) = 0. 4.3)
By means of Eq. (4.1), we obtain

- f_a_ E) d (4.4)
q tt ) oy () o

With small values of Fp in expansion in powers of Fp
(0/0pND/p) = (1/p){ — olu) + @' (u)Fp)/2 + ...}

the principal contribution is madeby the first term in the curly brackets, and there 8/dp-(®/p)< 0. Using
this inequality, we find from Eq. (4.4) that g > —t. The equation for determining w_ is obtained from Eq. (4.2),
if we put g = —t,
day/dt =®(2, w,(1—1))/0x{l — £),0,(0) =0, wy(e) = o_. 4.5)
Table 4 shows the results of a numerical computation w;(computer),w, w_, and A =<w >/w,,

In order to obtain the approximaté relations in the expansion of ® in powers of Fp (the case of small
temperature pulsations), we limit ourselves to two terms:

O = @lu) + ¢ (u)Fp*/2.
Substituting this approximate value of @ in Eq. (4.3) and (4.5), we find

€
0} = of(e) =2 | i exp [— P2’ (u)] du; (4.6)
0

ol = ad(e) =2 [ B exp (— F* (9 () + o () (1 — )} du. -
0

u
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TABLE 1

n=1. 0=0,8, Bo=10 n=t, 6=0.9, Bo=10
—1 . i
Le™" wy com- Ax |ACAE| 3— | <a> Wo oM sy |a car| 2= | <a>
puter puter
0,2 0.23%  1.35 0,75 0,97 1,04 0.22% 1,43 0.67 0.90 0.97
0.6 0.167 1.08 0,96 .96 1.02 0.153 117 0.9_15 0,94 0,99
1.0 0,136 1.04 0.99 0.96 1.01 0,127 1.1 0.97 0.92 0.98
6 0.061  0.95 0,98 .92 0.97 0.055 1.05 1 0.93 0.96
10 0,047 096 1,00 0.94 0.08 0,043 1.05 1 0.9 0.98
TABLE 2
9 {3.2) oL (3.4) R oy ] O (3.8) I
" Coctoct 1 Slece | @81 Le~0h | 0mo e o | @ (1] Le=e
a 1 2 1.344 . 0,3 0.82
1 b 3 3 3 1 i
c 0.5 0.3 { —_ —
a 15 3 211 0.5
2 4 5 6 6 3 —
c 1.5 1.5 4,442 — —_
TABLE 3
" Les=cc 0=0.9
com- - i
% or ‘ ;)lg[e:)m w__ (2.1%) w_. (3,8) o [7] A__ ACAE
6 0.587 0.398 0.386 0.3581 0,403 0.96 1.04
9 0,477 0323 0.321 0,319 0.330 0.99 1.02
10 0.432 0.306 0.305 0.304 0,314 0,99 1.03
12 0.412 0.280 0,280 0.279 0,287 i 4,03
TABLE 4 TABLE 5
6=0.8§, n=t{
0, F Wo {®) /0
8¢ F O Oy @ A
6 1 0209 100
f 02306 02109 0,938  1.01 4 0zl 142
G 4 0,3218 0,25114 0,1959 1.03
7 0,4753 0,3352  0.2130 1,02 14 1 0,0962 1,02
4 0.1101 1,412

1 0.0995  0.0962  0,0918 0,99
14 4 0.1238  0,1101  0,0967 1.00
8 0.1904  0.1568  0,1135 0.97

If we expand the exponential functions in Eq, (4.6) in series with respect to the exponent and we limit ourselves
to two terms of the expansion, then

€ €

2 ¢ () ¢ (u) .
ﬁ)+=2 'a-—:u—):du—i-zeO m—du’ (4.7)

o,

e
ot =2 (200 gy g [ €0 4,
- bl—u bl——u :

The final result is obtained if, in the evaluation of the integrals in Eq. (4.7), we use the same method as in the
case of the laminar flame:

0y = @5 {1 + (n -+ 1)20,(3/2 — (n + 2) 0}} +1(3n + DHI(2n - 1)/2(0x (2 6,)2n+L]F2, 4.8)

Comparison of the approximate values of the combustion velocity, calculated by formula (4.8) for the same
parameters as in Table 4, with exact values of wj is given in Table 5,

The method of estimates, in contrast from the method of combined asymptotic expansions, has the draw-
back that it does not consist of the standard procedure for finding the initial "best" estimate. However, once
it has been found, subsequent estimates can be refined by the standard procedures for example, by Chaplygin's
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method [10]. Among the advantages of the method of estimates, we should make mention of the following: first,
the simplicity in finding subsequent expansions in powers of 1/6 0> second, a knowledge of the range over which
the exact solution is applicable; and the simplicity of generalization to a heat release function which is differ-
ent from the Arrhenius function. Preliminary results of this paper as applicable to laminar flames are dis-
cussed in [11].
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NONLINEAR ANALYSIS OF THE FLOW INITIATED BY
THE SUDDEN MOTION OF A WEDGE

V. V. Titarenko UDC 538.6.011

Certain self-similar problems involving the sudden motion of a wedge which were treated in the
linear approximation in [1-3] are studied by the method of matched asymptotic expansions. The
nature of the wave boundary of the perturbed region is determined. Second-approximation solu-
tions are constructed which describe flows behind weak shock fronts propagating in a stationary
gas and behind fronts of weak discontinuity lines propagating by known uniform flows, A bound-
ary-value problem is formulated whose solution describes, in first approximation, flows in the
neighborhoods of points of interaction of the fronts. The existence of similarity rules of flows in
these nieghborhoods is estimated. An approximate solution of the problems is given.

$1. Letus considerthe flow of a stationary ideal polytropic gas arising from the sudden motion of an in-
finite wedge with constant velocity W, inthe negative Ox direction. The parameters of this self-similar prob-
lem are the Mach number of the wedge M, =W,/a,, the adiabatic exponent of the gas y, and the angles ay, a,
between the edges of the wedge of the Ox axis, The following cases are examined; a) a wedge with arbitrary
vertex angle moving at low velocity My<<1; b) a thin wedge o =a «1 moving with subsonic velocity; ¢) athinwedge
moving with supersonic velocity (Fig. 1a-b, c,respectively). Inthe latter case the condition @ M, « 1'must be satisfied.
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